Adaptive Modelling and Predictive Control of an Ic Engine
نویسندگان
چکیده
This paper presents modelling of internal combustion (IC) engine with adaptive neural networks. A radial basis function network model with both centres and weights adapted and a model with only weights adapted are compared with a fixed parameter model. The developed models are used in model based predictive control (MPC) to form an adaptive nonlinear MPC scheme and applied to engine speed tracking control. The modelling and control are based on a generic mean value engine model and consists of three submodels that describe the fuel mass flow dynamics, the intake manifold filling dynamics and the crankshaft speed. Adaptive MPC is shown superior over the fixed parameter model based control. Copyright © 2005 IFAC
منابع مشابه
Improving Simulation Accuracy of a Downsized Turbocharged SI Engine by Developing a Predictive Combustion Model in 1D Simulation Software
In this paper we aim to develop a predictive combustion model for a turbocharged engine in GT-Power software to better simulate engine characteristics and study its behavior under variety of conditions. Experimental data from combustion was initially being used for modelling combustion in software and these data were used for model calibration and result validation. EF7-TC engine was chosen for...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملAdaptive Simplified Model Predictive Control with Tuning Considerations
Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...
متن کاملOn-Engine Validation of Mean Value Models for IC Engine Air-Path Control and Evaluation
Mean value engine models (MVEM) are well established for the study of IC engine air-path performance. Closed-loop control of the air-path is used to ensure the tracking of reference signals subject to constraints. To meet these requirements model predictive control (MPC) has been applied successfully to several air-path applications. This paper reports on the development of an MVEM and suitable...
متن کاملControlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کامل